

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Saint-Gobain Sweden AB, Weber
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2393-1131-EN
Registration number:	NEPD-2393-1131-EN
ECO Platform reference number:	-
Issue date:	01.10.2020
Valid to:	01.10.2025

weber REP flow

Saint-Gobain Sweden AB, Weber

www.epd-norge.no

General information

Product:

weber REP flow

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-2393-1131-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR. NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber REP flow

Declared unit with option:

A1,A2,A3,A4,A5

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

anc Konny

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Saint-Gobain Sweden AB, Weber Contact person: Anders Anderberg Phone: +46 8 625 6105 e-mail: anders.anderberg@weber.se

Manufacturer:

Saint-Gobain Sweden AB, Weber

Place of production:

Saint-Gobain Sweden AB, Riksten

Management system:

ISO 9001, ISO 14001

Organisation no:

SE-556241-2592

Issue date: 01.10.2020

Valid to: 01.10.2025

Year of study:

2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v4.0 from LCA.no Approval: Company specific data are: Collected/registered by: Jenny Knutsson

Internal verification by: Helene Wallgren

Approved:

Sign
Hakon Darrow
Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

weber REP flow is a highly flowable drymix mortar based on CEM I binder. Main areas are for concrete renovation on top of old concrete slabs and as a thin solution to standard concrete slabs. REP flow is used for pouring and laying where a very high-grade and durable concrete is needed. For example, structures that will be exposed to frost and salt, concrete structures exposed to chemical attack and floors subjected to heavy wear. REP flow is mainly used in layers of 10-80 mm.

Product specification

The composition of the product is described in the following table:

Materials	%
Binder	25-50
Aggregate	40-70
Filler	5-10
Additives	< 5
Fiber	<1
Packaging	0,02

LCA: Calculation rules

Declared unit:

1 kg weber REP flow

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Technical data:

weber REP flow is tested and approved according to EN 1504-3.

For further information, see www.se.weber/

Market:

Nordic and Baltic countries. Reference service life, product

The reference service life of the product is similar to the service life of the building.

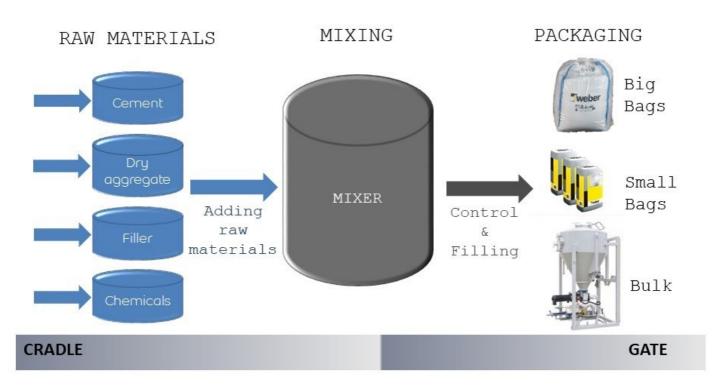
Reference service life, building

50 years

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:


Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Cement	Supplier	EPD	2014
Additives	EPD-EFC-20150091-IAG1-EN	EPD	2015
Additives	ecoinvent 3.4	Database	2017
Aggregate	ecoinvent 3.4	Database	2017
Filler	ecoinvent 3.4	Database	2017
Packaging	ecoinvent 3.4	Database	2017
Packaging	Modified ecoinvent 3.4	Database	2017
SC 199	Owner of EPD	Database	

System boundary:

All processes from raw material extraction to product transport to the construction site and assembly are included in the analysis (A1 - A5). The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis.

Additional technical information:

The remaining powder is classified as hazardous waste. Cured material is inactive and not classified as hazardous waste and may be disposed as construction waste to disposal or recycling.

The packaging properly emptied is not classified as hazardous waste.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	300	0,022823	l/tkm	6,85
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Additional A4 information	Unit/Range	Value
Lilleström, Norway (truck / truck to jobsite: 798 km)	Multiplication factor GWP/A4	1 86
Karlslunde, Denmark (truck / truck to jobsite: 960 km)	Multiplication factor GWP/A4	215
Helsinki, Finland (truck / truck to jobsite: 800 km)	Multiplication factor GWP/A4	18/

Assembly (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	0,0002
Electricity consumption	kWh	0,0020
Other energy carriers	MJ	
Material loss	kg	
Output materials from waste treatment	kg	0,0043
Dust in the air	kg	
VOC emissions	kg	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Produc	ct sta	ge	Constr instal sta	lation		User stage End of life stage . syste			er stage End of life stage			Beyond the . system bondaries				
Raw materials	Transmost	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A	\ 2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1-A3	A4	A5
GWP	kg CO ₂ -eq	4,24E-01	2,62E-02	1,51E-04
ODP	kg CFC11 -eq	1,00E-08	5,10E-09	1,00E-10
POCP	kg C ₂ H ₄ -eq	6,95E-05	4,23E-06	4,32E-08
AP	kg SO ₂ -eq	7,88E-04	8,51E-05	8,06E-07
EP	kg PO ₄ ³⁻ -eq	1,81E-04	1,43E-05	1,55E-07
ADPM	kg Sb -eq	9,52E-07	5,91E-08	1,35E-09
ADPE	MJ	3,17E+00	4,11E-01	1,40E-03

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Resource use				
Parameter	Unit	A1-A3	A4	A5
RPEE	MJ	1,12E+00	7,42E-03	5,65E-03
RPEM	MJ	5,25E-01	0,00E+00	0,00E+00
TPE	MJ	1,65E+00	7,42E-03	5,65E-03
NRPE	MJ	3,52E+00	4,23E-01	1,36E-02
NRPM	MJ	5,93E-02	0,00E+00	0,00E+00
TRPE	MJ	3,58E+00	4,23E-01	1,36E-02
SM	kg	1,78E-03	0,00E+00	0,00E+00
RSF	MJ	1,74E-01	0,00E+00	5,34E-06
NRSF	MJ	2,90E-01	0,00E+00	0,00E+00
w	m ³	2,01E-03	9,98E-05	2,14E-04

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3	A4	A5			
HW	kg	7,84E-05	2,25E-07	7,40E-09			
NHW	kg	7,68E-02	3,84E-02	1,30E-04			
RW	kg	INA*	INA*	INA*			
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed							

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1-A3	A4	A5		
CR	kg	0,00E+00	0,00E+00	0,00E+00		
MR	kg	1,06E-04	0,00E+00	0,00E+00		
MER	kg	1,22E-03	0,00E+00	4,26E-03		
EEE	MJ	INA*	INA*	INA*		
ETE	MJ	INA*	INA*	INA*		
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy						
"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed						

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Renewable electricity with Guarantee of Origin from LOS (kWh)	Modified ecoinvent 3.4	60,20	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Name	CASNo	Amount
Portland Cement	65997-15-1	25-50%

Indoor environment

The product has no impact on the indoor environment.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, LCA.no report number 04.18

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 009 Part B for technical-chemical products. Ver. 1.0 June 2018, EPD-Norge.

epd-norge.no	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo 0303 Oslo Norway	Phone: e-mail: web:	+47 23 08 80 00 post@epd-norge.no www.epd-norge.no
	Owner of the declaration Saint-Gobain Sweden AB, Weber Box 415 SE-19162 Sollentuna	Phone: Fax: e-mail: web:	+46 8 625 6105 anders.anderberg@weber.se www.weber.se
LCA	Author of the Life Cycle Assessment LCA.no AS Dokka 1C 1671 Kråkerøy	Phone: Fax: e-mail: web:	+47 916 50 916 90571091 post@lca.no www.lca.no
LCA	Developer of EPD generator LCA.no AS Dokka 1C 1671 Kråkerøy	Phone: e-mail: web:	+47 916 50 916 post@lca.no www.lca.no